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Abstract. The basic goal of gait recognition is to predict the identity of
a subject from his/her walking recording. Since the gait detection process
is non-inductive, non-contactive, and does not require the participation
of other human beings, gait recognition has great application potential
for biometric identification. GaitSet is an efficient, flexible gait recogni-
tion algorithm with low computational cost, and is widely used in the
field of gait recognition. GaitSet processes the frames of a video as an
unordered set and may lose some sequential patterns. To address this,
we apply the Micro-motion Capture Module to embed complex temporal
patterns for gait recognition. Data augmentation is also used to improve
the robustness of the recognizer. Experimental results show the effective-
ness of our method.

1 Introduction

Compared with other biological characteristics, such as face, fingerprint and iris,
gait information has great advantages to identify a person, since gait is hard
to imitate and can be obtained in a non-inductive and non-contactive way. Gait
recognition [1, 2] takes either of the two kinds of methods, i.e., model-based meth-
ods or model-free methods. Model-based methods typically extract features from
the model of body structure. These features include pendulum [3], the inclina-
tion of leg [4] and the movement of leg joints [5]. Instead of using features defined
in a body model, model-free methods [6, 7, 10] extract features directly from the
input frames by machine learning techniques. From these methods, Gaitset [10]
achieves state-of-the-art performance since it learns informative representations
through a deep neural network model. Therefore, we choose Gaitset as our back-
bone model. Gaitset is built based on the hypothesis that the frame sequence of
a walking video can be recovered from the unordered set of frames. Therefore,
GaitSet regards the frames from a video as an unordered set and may lose some
sequential patterns. However, such hypothesis may not be satisfied in real-world
data with complex spatial and temporal patterns. To promote the capability
of temporal modeling, we add Micro-motion Capture Module (MCM)[13] into
the original GaitSet model. In addition, we use image augmentation operations,
such as flipping, blurring and occlusion, to avoid overfitting and improve gen-
eralization performance. Experimental results show that the improved GaitSet
method achieves an accuracy of 77.4% on the CASIA-E validation set, a higher
performance than 69.41% for the original GaitSet method.
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2 Method

2.1 GaitSet

GaitSet[10] is an efficient and flexible gait recognition algorithm with low com-
putational cost. It firstly extracts frame-level features from a sequence of sil-
houettes by CNNs independently. Then features from each frame are fused to a
single feature map, and the Horizontal Pyramid Mapping (HPM) operation is
used to capture the information of each body part of the pedestrian from the
fused feature map. The whole framework of Gaitset is shown in Fig. 1.

Formally, GaitSet takes a set of m body silhouettes extracted from a person’s
walking video as the input, denoted as S = {si}, i = 1, 2, ...,m. Gait recognition
is dependent on the representation of walking posture, which is extracted by
CNNs in Gaitset. Specifically, three convolution modules are adopted, as shown
in Fig. 2. The encoded feature map f li is formulated as:

f li = Φl(f
l−1
i ) (1)

where l = 1, 2, 3, i = 1, 2, 3, ...,m, Φl denotes the convolution network of module
l, and f0i = si. Tab. 1 shows the network settings. Each frame of silhouette
shares the parameters of the convolution modules.
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Fig. 1. The framework of GaitSet.

Table 1. The convolution network settings

module layer kernel size stride

module1
conv1-1 5×5 1
conv1-2 3×3 1
pooling1 2×2 2

module2
conv2-1 3×3 1
conv2-2 3×3 1
pooling2 2×2 2

module3
conv3-1 3×3 1
conv3-2 3×3 1
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Fig. 2. The convolution network of GaitSet.

The lengths of different silhouette sequences may be variant. In order to
integrate information from all frames in the sequence, GaitSet uses a set aggre-
gation operation, i.e., Set Pooling (SP), to fuse features from each frame in the
sequence. The SP operation regards the silhouette sequence as a set, and the
fused features, as shown in Equation (2), is embedded with set-level patterns by
the SP operation.

F l[i, j, k] = SP ({f l1[i, j, k], f l2[i, j, k], ..., f lm[i, j, k]}) (2)

In Equation (2), i, j, k respectively represent the index of row, column and
channel of a feature map, and SP is instantiated as one of these operations, i.e.,
{Max,Median,Mean, JointFunc, etc}. JointFunc is formulated as:

JointFunc(∗) = 1 1Conv(concat[Max(∗),Median(∗),Mean(∗)]) (3)

where concat denotes the channel-wise concatenation operation, 1 1Conv de-
notes 1×1 convolution layer. The SP operation is performed after each convolu-
tion module. Fig. 3 visualizes the fused feature map from the Mean operation.
This feature map can be interpreted as a Gait Energy Image (GEI).

In the walking process, different body parts may have different moving pat-
terns. In order to encode fine-grained gait features for these body parts, Gaitset
adopts HPM to divide the input feature map into multiple parts evenly in the
horizontal direction. If the division scale is n, then the feature map is equally
divided into 2n−1 parts horizontally. Each divided feature is processed by Global
Average Pooling (GAP) operation, Global Max Pooling (GMP) operation and
Fully-Connected (FC) network, as shown in Fig. 4.

2.2 Our solution

The SP operation in Gaitset is adopted based on the hypothesis that the frame
sequence of a walking video can be recovered from the unordered set of frames.
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Fig. 3. Fused feature map by Mean operation

Fig. 4. The Horizontal Pyramid Mapping module.

However, this hypothesis may not be satisfied in real-world scenario. For ex-
ample, when the walking subject moves with high-frequent turning and waving
actions, the unordered set may lose some temporal information from the original
sequence, and consequently, the accuracy of GaitSet decreases. To address this
problem, we introduce a new set pooling operation, i.e., Micro-motion Capture
Module (MCM)[13], which models all frames as an ordered sequence instead of
an unordered set. The MCM module is shown in Fig. 5. The size of the sliding
window is 2r + 1, where r is a hyperparameter. To extract temporal informa-
tion, we apply GAP and GMP on the sliding window. These operations can be
formulated as:

T l
i = GAP{f li−r, ..., f

l
i , ..., f

l
i+r}+GMP{f li−r, ..., f

l
i , ..., f

l
i+r} (4)

Then GMP is used for further fusion of feature maps, as shown in the following
equation:

F l = GMP{T l
r+1, T

l
r+2, ..., Tn−r} (5)

In order to improve the generalization performance of the model, we adopt a
variety of image augmentation strategies, such as horizontal flipping, Gaussian
blurring and random occlusions, as shown in Fig. 6, Fig. 7 and Fig. 8.
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Fig. 5. The Micro-motion Capture Module.

Fig. 6. The flipped frame sequence.

3 Experiments

In this section, firstly, we introduce the training and validating conditions, in-
cluding the adopted data set and the implementation details. Next, we give the
experimental results and make comparisons.

3.1 Data

We adopt the CASIA-E dataset1 as the experimental data set, which contains
500 videos of walking people. Each video is a frame sequence, where each frame
is a silhouette image instead of a RGB image. We randomly split the CASIA-E
dataset at a ratio of 9:1 as training and validating data.

1 https://drive.google.com/drive/folders/1SCcsXfAiWbXGSCb33NQ0ou8Ln1dB44
Of?usp=sharinghttps://drive.google.com/drive/folders/1SCcsXfAiWbXGSCb33
NQ0ou8Ln1dB44Of?usp=sharing
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Fig. 7. The frame sequence applied with Gaussian blurring.

Fig. 8. The frame sequence applied with random occlusions.

3.2 Implementation details

On each frame, we resize the silhouette to 64 × 64, then feed it into the net-
work. The sequence of silhouettes is shown in Fig. 9. Our method is optimized
by Adam[16] with an initial learning rate of 1e-4, r in Equation (4) is set as 2,
the batch size is set as 64, the total number of iteration is set as 200000.

Fig. 9. The sequence of silhouettes.
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3.3 Experimental results

The recognition accuracy of different experimental settings is shown in Tab. 2.
From this table, we find that the MCM and the data augmentation strategies
we adopt improve the performance of Gaitset significantly.

Table 2. Recognition accuracy on the validation set of CASIA-E.

Method Validation accuracy

original gaitset 0.6941
gaitset + imgaug 0.7673
gaitset + MCM 0.7562
gaitset + MCM + imgaug 0.7696

4 Conclusion

We add the Micro-motion Capture Module and some data augmentation strate-
gies, such as horizontal flipping, Gaussian blurring and random occlusions, into
the Gaitset method, and significantly improve the performance of Gaitset on the
CASIA-E data set in gait recognition accuracy .
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